(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(x, 0) → x
+(minus(x), x) → 0
minus(0) → 0
minus(minus(x)) → x
minus(+(x, y)) → +(minus(y), minus(x))
*(x, 1) → x
*(x, 0) → 0
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(x, minus(y)) → minus(*(x, y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(minus(z0), z0) → 0
minus(0) → 0
minus(minus(z0)) → z0
minus(+(z0, z1)) → +(minus(z1), minus(z0))
*(z0, 1) → z0
*(z0, 0) → 0
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(z0, minus(z1)) → minus(*(z0, z1))
Tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
S tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
K tuples:none
Defined Rule Symbols:

+, minus, *

Defined Pair Symbols:

MINUS, *'

Compound Symbols:

c4, c7, c8

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
We considered the (Usable) Rules:

*(z0, 1) → z0
*(z0, 0) → 0
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(z0, minus(z1)) → minus(*(z0, z1))
minus(0) → 0
minus(minus(z0)) → z0
minus(+(z0, z1)) → +(minus(z1), minus(z0))
+(z0, 0) → z0
+(minus(z0), z0) → 0
And the Tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [4] + [4]x2   
POL(*'(x1, x2)) = [3] + [5]x2   
POL(+(x1, x2)) = [3] + x1 + [2]x2   
POL(+'(x1, x2)) = 0   
POL(0) = 0   
POL(1) = 0   
POL(MINUS(x1)) = 0   
POL(c4(x1, x2, x3)) = x1 + x2 + x3   
POL(c7(x1, x2, x3)) = x1 + x2 + x3   
POL(c8(x1, x2)) = x1 + x2   
POL(minus(x1)) = [5] + x1   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(minus(z0), z0) → 0
minus(0) → 0
minus(minus(z0)) → z0
minus(+(z0, z1)) → +(minus(z1), minus(z0))
*(z0, 1) → z0
*(z0, 0) → 0
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(z0, minus(z1)) → minus(*(z0, z1))
Tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
S tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
K tuples:

*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
Defined Rule Symbols:

+, minus, *

Defined Pair Symbols:

MINUS, *'

Compound Symbols:

c4, c7, c8

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
We considered the (Usable) Rules:

*(z0, 1) → z0
*(z0, 0) → 0
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(z0, minus(z1)) → minus(*(z0, z1))
minus(0) → 0
minus(minus(z0)) → z0
minus(+(z0, z1)) → +(minus(z1), minus(z0))
+(z0, 0) → z0
+(minus(z0), z0) → 0
And the Tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [2]x1·x2   
POL(*'(x1, x2)) = x1 + [2]x1·x2   
POL(+(x1, x2)) = [1] + [2]x1 + [2]x2 + x12   
POL(+'(x1, x2)) = 0   
POL(0) = 0   
POL(1) = [2]   
POL(MINUS(x1)) = x1   
POL(c4(x1, x2, x3)) = x1 + x2 + x3   
POL(c7(x1, x2, x3)) = x1 + x2 + x3   
POL(c8(x1, x2)) = x1 + x2   
POL(minus(x1)) = [2]x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(minus(z0), z0) → 0
minus(0) → 0
minus(minus(z0)) → z0
minus(+(z0, z1)) → +(minus(z1), minus(z0))
*(z0, 1) → z0
*(z0, 0) → 0
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(z0, minus(z1)) → minus(*(z0, z1))
Tuples:

MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
S tuples:none
K tuples:

*'(z0, +(z1, z2)) → c7(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(z0, minus(z1)) → c8(MINUS(*(z0, z1)), *'(z0, z1))
MINUS(+(z0, z1)) → c4(+'(minus(z1), minus(z0)), MINUS(z1), MINUS(z0))
Defined Rule Symbols:

+, minus, *

Defined Pair Symbols:

MINUS, *'

Compound Symbols:

c4, c7, c8

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))